CAS Biodiversity Research
[1] Hu et al. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci Adv. 2021; 7(4):eabd5725. DOI: 10.1126/sciadv.abd5725.
[2] Ji et al. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett. 2013; 16: 1245-1257. doi: 10.1111/ele.12162.
[3] Li et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat Clim Chang 2016; 6: 498–502. https://doi.org/10.1038/nclimate2895.
[4] Liu et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci Adv 2019; 5: eaav1332. DOI: 10.1126/sciadv.aav1332.
[5] Liu et al. Congener diversity, topographic heterogeneity and human-assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecol Lett. 2014; 17: 821-829. doi: 10.1111/ele.12286.
[6] Orr et al. Global Patterns and Drivers of Bee Distribution. Curr Biol. 2021; 31: 451-458. https://doi.org/10.1016/j.cub.2020.10.053.
[7] Qian et al. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc Natl Acad Sci USA 2019; 116: 23192–201. https://doi.org/10.1073/pnas.1822153116.
[8] Wang et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat Commun 2019; 10: 2187. https://doi.org/10.1038/s41467-019-09971-8.
[9] Wang et al. Nutrient enrichment modifies temperature biodiversity relationships in large-scale field experiments. Nat Commun 2016; 7: 13960. DOI: 10.1038/ncomms13960.
[10] Wei et al. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Glob Chang Biol. 2020; 26: 4495-4505. https://doi.org/10.1111/gcb.15190.
[1] Hu et al. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Nat Commun 13, 6413 (2022). Doi: 10.1038/s41467-022-34138-3
[2] Chen et al. Is the East Asian flora ancient or not? Natl Sci Rev 2018; 5: 920–32. https://doi.org/10.1093/nsr/nwx156.
[3] Ding et al. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 2020; 369: 578–81. DOI: 10.1126/science.abb4484.
[4] Du et al. The behavioural and physiological strategies of bird and reptile embryos in response to unpredictable variation in nest temperature. Biol Rev 2015; 90: 19–30. https://doi.org/10.1111/brv.12089
[5] Hu et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. PNAS 2017; 114: 1081–6. DOI: 10.1073/pnas.1613870114.
[6] Li et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat Ecol Evol. 2018; 2(11):1751–1760 https://doi.org/10.1038/s41559-018-0668-2.
[7] Liu et al. Predicting the responses of subalpine forest landscape dynamics to climate change on the eastern Tibetan Plateau. Global Change Biol. 2021; 27: 4352–4366. DOI: 10.1111/gcb.15727.
[8] Lu et al. Evolutionary history of the angiosperm flora of China. Nature 2018; 554: 234–8. https://doi.org/10.1038/nature25485.
[9] Shi et al. Mesozoic cupules and the origin of the angiosperm second integument. Nature 2021; 594: 223-226. https://dx.doi.org/10.1038/s41586-021-03598-w
[10] Xu et al. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. PNAS 2019; 116: 26674–81. https://doi.org/10.1073/pnas.1911851116.
[11] Zhu et al. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. PNAS 2018; 115: 1865–70. https://doi.org/10.1073/pnas.1720487115.
[12] Cheng et al. Parallel genomic responses to historical climate change and high elevation in East Asian songbirds. PNAS 2021, 118 (50) e2023918118. https://doi.org/10.1073/pnas.2023918118
[1] Chen et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 2019; 366: 124-8. DOI: 10.1126/science.aau1361.
[2] Gu et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 2021; 591: 259-264. https://doi.org/10.1038/s41586-021-03265-0.
[3] He et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 2019; 34: 200-10. https://doi.org/10.1016/j.tree.2018.11.004
[4] Jia et al. Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nat Commun 2020; 11: 286. https://doi.org/10.1038/s41467-019-14140-y.
[5] Kong et al. Spatial models of giant pandas under current and future conditions reveal extinction risks. Nat Ecol Evol. 2021; 5: 1309-1316. https://doi.org/10.1038/s41559-021-01520-1.
[6] Li et al. Large numbers of vertebrates began rapid population decline in the late 19th century. PNAS 2016, 113 (49) 14079-14084; DOI: 10.1073/pnas.1616804113
[7] Liu et al. Ambient climate determines the directional trend of community stability under warming and grazing. Global Change Biol. 2021, 27: 5198-5210. https://doi.org/10.1111/gcb.15786.
[8] Nie et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 2015; 349: 171-4. DOI: 10.1126/science.aab2413.
[9] Yang et al. Why functional traits do not predict tree demographic rates. Trends Ecol Evol 2018; 33: 326-36. https://doi.org/10.1016/j.tree.2018.03.003.
[10] Zhang et al. Convergent evolution of Rumen microbiomes in high-altitude mammals. Curr Biol 2016, 26: 1873-979. https://doi.org/10.1016/j.cub.2016.05.012
[11] Zhou et al. Why wild giant pandas frequently roll in horse manure. PNAS 2020; 117: 32493-32498. https://doi.org/10.1073/pnas.2004640117.
[1] Chen et al. Plant diversity enhances productivity and soil carbon storage. PNAS 2018; 115: 4027-32. https://doi.org/10.1073/pnas.1700298114.
[2] Feng et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Chang 2016, 6: 1019-22. DOI: 10.1038/NCLIMATE3092.
[3] Huang et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 2018; 362: 80-3. DOI: 10.1126/science.aat6405.
[4] Lu t al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS 2018, 115: 4039-44. https://doi.org/10.1073/pnas.1700294115.
[5] Ouyang et al. Improvements in ecosystem services from investments in natural capital. Science 2016; 352: 1455-9. DOI: 10.1126/science.aaf2295.
[6] Tang t al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. PNAS 2018; 115 (16) 4021-4026. DOI: 10.1073/pnas.1700291115.
[7] Tihelka et al. Angiosperm pollinivory in a Cretaceous beetle. Nature Plants 2021; https://doi.org/10.1038/s41477-021-00893-2
[8] Wei et al. The value of ecosystem services from giant panda reserves. Curr Biol 2018; 28: 2174–80. https://doi.org/10.1016/j.cub.2018.05.046.
[9] Zheng et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. PNAS 2013; 110: 16681–6. https://doi.org/10.1073/pnas.1312324110
[10] Zhu et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci Adv. 2021, 7: eabe4261. DOI: 10.1126/sciadv.abe4261.
[1] Wang et al. Global economic costs of mammal invasions. Sci. Total Environ., 857, Part 2, 2023. https://doi.org/10.1016/j.scitotenv.2022.159479.
[2] Zhang et al. Biological invasions facilitate zoonotic disease emergences. Nat Commun 13, 1762 (2022). https://doi.org/10.1038/s41467-022-29378-2
[1] WAN et al. Broad-scale climate variation drives the dynamics of animal populations: a global multi-taxa analysis. Biol Rev, (2022) 97: 2174-2194. https://doi.org/10.1111/brv.12888
Download: