Monitoring tropical forest insects in the 21st century: challenges and opportunities in SE Asia

Aki Nakamura (XTBG) and Yves Basset (STRI)

Insect apocalypse?

Why insects?

- Most of the animal biomass and diversity on Earth (80%)
- Innumerable interactions with plants in tropical forests
- Hugely influential for plant and vertebrate communities
- Provide crucial ecosystem services:
 pollination, decomposition, waste disposal, nutrient cycling
- Most tropical species unknown to Science
 - → Essential share of biodiversity which is vital, unknown and neglected

Why monitoring insects?

- Insect decline (apocalypse) reported in temperate areas → threatens human wellbeing
- Extremely specialized, very sensitive to disturbance, including to climate change
- Short-lived, 2-10 generations per year in the tropics
- Data lacking in the tropics
 - → Implement early warning systems Test for worldwide insect decline Informed environmental policies

Geographic bias in insect biodiversity information

Dirzo 2014 Science, van Klink et al. 2024 Nature

Worldwide network of insect monitoring

ForestGEO insect monitoring in tropical and subtropical forests

Oldest monitoring site – Barro Colorado Island (Panama) since 2009 Oldest monitoring site in SE Asia – **Khao Chong** (Thailand) since 2010

Why monitoring insects at Khao Chong and Barro Colorado Island?

- KHC and BCI safe from deforestation and pollution (ForestGEO plots)
- Our program has been building insect collections
 for the last 16 years at these two locations (120,000 specimens)
- References libraries for DNA sequences, sound and images
- Meteorological and vegetation records (ForestGEO plots)
- Excellent logistics and safe working conditions
 - → Study insects in an environment where climate change is the sole anthropogenic stressor with a unique insect knowledge for the tropics

In numbers: Barro Colorado Island and Khao Chong

	Barro Colorado Island	Khao Chong
Country	Panama	Thailand
Monitoring since	2009 (15 years)	2011 (13 years)
ForestGEO plot	50ha	24ha
Av. daily max Temperature	28.5 °C	30.9°C
Staff	5	6
No. taxa monitored	23	16
No. focal species	2,572	2,664
% spp. with images	70%	71%
No. samples	8,970	6,161
Noinsectrecords	769K	282K
No ind. in collection	81K	41K
No. DNA sequences	12K	2K
DNA metabarcoding	100GB	***
Bioacoustics	1 TB each month	***
Automated monotoring with AI	21K picts each week	***
Publications	70+	8
Training	PhD, MSc, interns, volunteers	Volunteers

Target taxa in Khao Chong (Thailand)

Target groups and traps:

- Butterflies (Pollard walks, 4 x year)
- Moths (Light traps, 4 x year)
- Ants (Winkler extraction, 1 x year)
- Fruit flies (McPhail traps, 4 x year)
- Termites (Manual searching in quadrats, 1 x year)

Standardized for each insect group across sites

McPhail traps

Taxa monitored, BCI (= KHC)

Monitoring methods

- Work at the species or morphospecies level, backed up by DNA barcoding
- Summarize information by functional groups and phylogeny

Butterfly families in Khao Chong 2011-2023

10 sites (3 days per survey)4 surveys per year120 samples per year!

Decline since 2018?

But more long-term data is required to detect their true trends

Moth families in Khao Chong 2011-2023

10 sites (2replications)4 surveys per year80 samples per year

Moths may be more sensitive to changing temperatures than butterflies?

Other insects in Khao Chong 2011-2023

Insect monitoring – what are we monitoring?

Lamarre et al. 2022 Biology Letters

 Some ecological patterns often manifest in overall abundance and common species

 But overall abundance is a coarse and common species occupy a small proportion of the total diversity

Butterfly monitoring data

Xishuangbanna, China (2015-2022)

Khao Chong, Thailand (2011-2014)

Are we seeing what we are seeing?

- Monitoring samples are dominated by singletons and doubletons
- The proportions of rare species is highly variable among insect groups
- The nature of sampling methods may contribute to the presence of rare species?

- Mismatched phenology?
- Identification errors?
- Vagrants/"tourists"?

Can our insect monitoring detect the loss of biodiversity?

 Butterfly data from both China and Thailand suggest that we cannot detect the loss of biodiversity until we lose over 20% of the species

- Ants the loss of >10% of species may be detectable
- Termites monitoring may detect changes as soon as a few species are lost

Can our insect monitoring detect the loss of biodiversity?

- The "detectability" of the changes in diversity varies across insect groups
- The nature of sampling may be the most important factor
 Butterflies: area-based passive sampling to capture mobile species
 Ants: area-based passive sampling to capture relatively less mobile species
 Termites: manual surveys targeting their colonies (dead woods)
- Some target insects may not reflect their changes in the monitoring data

Vertical stratification in insect monitoring?

Gamez and Harris, 2022

Vertical stratification across latitudes

Sampling methods (primary targets – flying insects)

Climate is more variable in the canopy during the day

Similar gamma diversity between the canopy and understory

But when sig. differences were found, the canopy harboured greater diversity

Similar alpha diversity between the canopy and understory

But when sig. differences were found, the canopy harboured greater diversity

Classical Indicator Value Protocol

Several species were restricted to the canopy or understory but they were also restricted to certain seasons

Punthuwat et al. unpublished

New technologies for hyper diverse insect monitoring

- Expansion of monitoring network (across latitude in SE Asia) means more work
- Traditional monitoring cannot handle numerous specimens and data
- New tech: DNA metabarcoding, bioacoustics, and automated visual monitoring with AI
- Enlarging taxonomic scope (more species)
- Increasing sampling frequency (diel activity patterns)
- Non-lethal protocols

AI based Automated Monitoring of Insects (AMI)

Bioacoustics: non-lethal monitoring of sound-producing insects

2023 -

25 sound recorders: 1TB data generated each month

Conclusion

- Insect declines in response to climate change already happening in southern Thailand?
- Setting global standards for whole-forest insect monitoring in conjunction with next-generation tools
- Using insects as warning systems of climate change
- Real impacts on policy making
- Outreach and education to raise awareness of insect conservation and enhance citizen science in tropical Asia

A New Chapter for Khao Chong

- Smithsonian Tropical Research Institute ceased funding KCH insect monitoring in December 2023
- XTGB took over the KCH laboratory and continue monitoring from February 2024 in collaboration with MU
- Funding for 2024 and 2025 provided by XTBG and CAS
- The laboratory upgrading and maintenance finalized in Aug 2025

New funding provided by Yunnan Provincial Government (2025-2028)

Acknowledgements

Funded by:

- Yunnan Provincial Government
- Chinese Academy of Sciences (CAS)
- National Natural Science Foundation of China (NSFT)
- Southeast Asian Biodiversity Research Institute (SEABRI-CAS)
- Xishuangbanna Tropical Botanical Garden (XTBG)

Our collaborators:

- Mahidol University
- Chulalongkorn University
- National Science Museum Thailand
- Queen Sirikit Botanic Garden
- Prince of Songkra University
- Kasetsart University
- Biotechnology and Ecology Institute, Laos

