

TREE SIZE DISTRIBUTIONS, POPULATION TRENDS AND SHADE TOLERANCE

Yue Bin, Helene C. Muller-Landau, Wanhui Ye, Linfang Wu, Juyu Lian*, Honglin Cao

South China Botanical Garden, CAS

(MOST) TREE SIZE DISTRIBUTIONS CAN BE BROADLY CLASSIFIED INTO TWO GROUPS

WHAT EXPLAINS THE SHAPE OF TREE SIZE DISTRIBUTIONS?

Two general types of explanations have been proposed.

 Population growth/decline: population increase or stasis → Reversed J population decline → Unimodal

2. Life history, specifically shade tolerance: shade tolerant species → Reversed J light demanding species → Unimodal (Wright et al. 2003)

MOTIVATION FOR THIS STUDY

Unimodal size distributions are expected to be quite rare in old-growth forests, because declining species and light-demanding species are expected to be rare.

But in the forest at our study site, Dinghushan, a substantial minority of species show strongly unimodal size distributions.

What explains the unimodal size distributions at this site?

Specific aims:

- 1. To test for an association between size distribution and population growth.
- 2. To investigate the relationships of size distributions with life history and shade tolerance.

STUDY SITE: DINGHUSHAN FOREST DYNAMICS PLOT

Climate: subtropical monsoon

Mean temperature: 20.9℃

Mean annual precipitation: 1929 mm

Vegetation type: Monsoon evergreen broadleaved forest

Forest age since last disturbance: 400 years

Plot area: 20 ha

Census dates: 2005 and 2010.

<u>Census methods</u>: All trees with diameter ≥ 1 cm are tagged, mapped, measured, and identified to species.

The plot hosts 71,617 individuals, 210 species, 119 genera, 56 families.

Focal species: 31 species having ≥500 individuals.

CLASSIFYING THE SHAPE OF TREE SIZE DISTRIBUTIONS

Our method

Peak **NOT** at the smallest size class

Modal (unimodal and multimodal) Peak was at the smallest size class

Reversed J (strictly non increasing)

Significant peak

NON Significant peak

Modal

INDIVIDUAL SPECIES SIZE DISTRIBUTIONS

8/31 species had unimodal distributions in 2005

23/31 species had reversed J distributions in 2005

WAS THE SHAPE OF THE SIZE DISTRIBUTION RELATED TO POPULATION GROWTH?

$$N_t = N_o (1+\lambda)^{\Delta t}$$

 λ = the per capita population growth rate

 N_o = initial population size

 N_t = the population size at time *t* (in 2010)

 Δt = the time difference (5 years)

NO. Annual population growth rates were NOT significantly different between reversed J and modal species.

(Wilcoxon Rank Sum test, W = 125, p = 0.1448)

WAS THE SHAPE OF THE SIZE DISTRIBUTION RELATED TO SHADE TOLERANCE?

NO significant association between size distribution and shade tolerance.

(X-square = 0.7901, df = 2, p = 0.6737)

WAS THE SHAPE OF THE SIZE DISTRIBUTION **RELATED TO MORTALITY RATES?**

$$A_t = N_0 (1-m)^{\Delta}$$

- **m**: annual per capita mortality rate
- \times A_t: No. of survivor at t=5
- \times N_o: No.of Ind. at t=0; delta t=5

No. There was no significant association between the shape of the size distribution and mortality rate.

(Wilcoxon Rank Sum Test W = 107, p= 0.5203)

WAS THE SHAPE OF THE SIZE DISTRIBUTION RELATED TO THE RECRUITMENT RATE?

$$\lambda = r - m$$

Yes. Modal species had significantly lower recruitment rates than reversed-J species. (Wilcoxon rank sum test: W = 149, p = 0.00865)

WAS THE SHAPE OF THE SIZE DISTRIBUTION RELATED TO SIZE- DEPENDENT GROWTH AND MORTALITY?

Dips in mortality and growth curves were also found among reversed J species, but the co-occurence of dips in both mortality and absolute growth functions was rare among reversed J species (just 4 /23 species).

Size distributions of 2 of these 4 species were modal in 2010.

Yes. We observed that in modal species, the peak in the size distribution tended to correspond with a dip in mortality and a dip in growth.

Methods for calculating expected size distributions from size-dependent growth and mortality

At demographic equilibrium

$$p(D) = \frac{R}{NG(D)} \exp\left(\int_{D_0}^{D} -\frac{M(D')}{G(D')}dD'\right)$$

(Kohyama 1991)

R = recruitment rate N = abundance in the initial census G(D)= absolute diameter growth as a function of diameter M(D) = mortality as a function of diameter D_0 = the size of individuals upon recruitment

Test 1 – Is the general shape the same?

Of the 8 observed unimodal species

- 7 were predicted to be unimodal
 (4 statistically significantly so)
- × 1 was predicted reversed J

Of the 23 observed reversed J species

- × 18 were predicted reversed J
- 5 were predicted modal; 3 of these 5 had unimodal size distributions in 2010.

Yes in 25 (or 27) of 31 species.

Test 2 – Are size class abundances similar?

There were strong (r>0.5) and significant (p<0.05) correlations between observed and expected abundances per size class in 24 of 31 species (18 reversed J and 6 modal):.

Observed and expected size distribution had overlapping confidence intervals, i.e. not significantly different, in over 50% of size classes in 12 of 31 species (10 reversed J and 2 modal).

Mixed results.

Test 3 – How do shape parameters compare?

 $p(D) = \frac{1}{n} \exp(-\alpha D)$

They are correlated, but not well-predicted.

THE PREDICTED EQUILIBRIUM SIZE DISTRIBUTIONS ARE FAR FROM CURRENT SIZE DISTRIBUTIONS.

Size distributions (and abundances) may still be changing over time, and far from equilibrium.

CONCLUSIONS

- * At this site, unimodal size distributions are not consistently associated with either population decline or shade-intolerance.
- Equilibrium size distributions predicted from sizedependent growth (G(D)) and size dependent mortality (M(D)) match current size distributions in some species but not others.
- Even though the forest at this site is 400 years old, it is not at equilibrium. Ongoing changes may reflect late succession, and/or responses to environmental change.

ACKNOWLEDGEMENTS

Knowledge Innovation Project of The Chinese Academy of Sciences(KSCX2-EW-Z)

the National Natural Science Foundation of China (31100312) and Chinese Forest Biodiversity Monitoring Network

This manuscript is a product of the 2011 analytical workshop of the Center for Tropical Forest Science (CTFS) in Changbaishan, China, jointly funded by the US National Science Foundation (DEB-1046113) and the National Natural Science Foundation of China (31011120470).