Tree seedling dynamics over 7 years in a subtropical rain forest, Taiwan

Chia-Hao Chang-Yang¹ Chia-Ling Lu¹ I-Fang Sun² Chang-Fu Hsieh¹

¹ National Taiwan University ² Tunghai University

Outline

- General description of seedling dynamics in the Fushan forest
- Density dependence at new seedling stages

- Seedling recruitment is a bottleneck in the life history of many tree species. (Swaine 1996)
- Forest community structure and composition may be largely determined at early life history stages.

(Augspurger 1984, De Steven 1991, Jones et al. 1994, Connell & Green. 2000)

Fushan Forest Dynamics Plot

Area: 25 ha Elevation: 650–733 m

Average temperature: 18.2 °C Annual precipitation: 4,271 mm Typhoons: 1.4 / yr

Seedling census in Fushan FDP

- 261 1-m² seedling plots
 - All tree species <1 cm DBH
 - First census: February, 2003
 - Recensus every 3 months
- Sample size (as of May 2009)
 - 25 CENSUSES (census in May, 2004 was missed)
 - 10,932 seedlings
 - 36 species

Interannual variation: Seedling density

Interannual variation: Seedling density

Interannual variation: Seedling density

Seedling spatial distribution

Density-dependent effects at young seedling stages

Janzen-Connell hypothesis

(Janzen 1970, Connell 1971)

- Density-dependent seedling recruitment and mortality in tropical forests (Webb & Peart 1999, Harms et al. 2000, Hille Ris Lambers et al. 2002)
- Negative density dependence is thought to be strongest for young seedlings. (Clark & Clark 1985)
- Hurricanes can alter the processes that may determine the seedling dynamics. (Walker & Neris 1993, Walker et al. 2003)
- Hurricanes may lead to weaker density-dependent effects of adults on seedling survival. (Vanermeer et al. 1996)

Objects

- Does density dependence occur at new seedling stages of Fushan tree species?
 - Recruitment (seed-to-seedling transition)
 - Survival
 - Growth

Seed-to-seedling transition

- 8 tree species with >50 new seedlings
- Model fitted by maximum likelihood

 $R_{it} = a S_{it}^{\ b}$

• Definitions:

 $R_{it} \equiv$ recruit density for station *i* in year *t*

- $S_{it} \equiv$ seed density for station *i* in year *t*
- $a, b \equiv fitted parameters$
- Asymptotic 2-unit support limits (analogs of 95% CIs)

Number of Recruits

Number of Seeds

Negatively density dependent recruitment

Glochidion acuminatum

Negatively density dependent recruitment

Glochidion acuminatum

Density-dependent effects on new seedling **survival**

- Generalized linear mixed-effects models (GLMM) with binomial errors
- Explanatory variables (Fixed effects)
 - Census interval
 - log(Initial height)
 - Seedling density in the same 1-m² seedling plot
 - Total, conspecific, & heterospecific seedling neighbors
 - Adult stem number within 10 m
 - Total, conspecific, & heterospecific adult neighbors
- Random effects
 - Individuals, species, station/plot

Seedling survival models

Model type	Model	Variables included
Density independent	0	a + b INT + c HT
Effect of conspecific density = effect of heterospecific density	1	a + b INT + c HT + d S _{total}
	2	a + b INT + c HT + f T _{total}
	3	a + b INT + c HT + d S _{total} + f T _{total}
Effect of conspecific density ≠ effect of heterospecific density	4	$a + b$ INT + c HT + d_1 S _{con} + d_2 S _{het}
	5	$a + b \text{ INT} + c \text{ HT} + f_1 \text{ T}_{\text{con}} + f_2 \text{ T}_{\text{het}}$
	6	$a + b$ INT + c HT + d_1 S _{con} + d_2 S _{het} + f T _{total}
	7	$a + b$ INT + c HT + d S _{total} + f_1 T _{con} + f_2 T _{het}
	8	$a + b$ INT + c HT + d_1 S _{con} + d_2 S _{het} + f_1 T _{con} + f_2 T _{het}

- Model selection: Akaike's Information Criterion (AIC)
- 2 different scales: community level, species level

Seedling survival model at community level (All species combined)

- Best model: 8
- Effects of conspecific density ≠ effects of heterospecific density

Seedling survival models at **community level** (All species combined)

Coefficient estimated

Seedling survival models at **species level** (Species with >100 recruits)

Coefficient estimated

Density-dependent effects on new seedling growth

Density-dependent effects on new seedling growth

- Binary growth data
 - RG >0: 1
 - RG ≤0: 0
- Generalized linear mixed-effects models (GLMM) with binomial errors
 - Fixed effects
 - Interval, log(HT), seedling and adult density
 - Random effects
 - Individuals, species, station/plot

Seedling growth model at community level (All species combined)

- Best model: 3
 - Effects of conspecific density = effects of heterospecific density

Seedling growth models at **species level** (Species with >100 recruits)

Summary

- Density dependence characterized the seedling recruitment, mortality, and growth.
 - Negatively density-dependent recruitment were observed for all species examined.
 - At community level, seedling and adult density were significant drivers of seedling mortality and growth.
 - Individual species-level analyses showed considerable variation among species.

Acknowledgements

- Funding
 Taiwan Forestry Research Institute
 Taiwan Forestry Bureau
 Logistical support
 Fushan Research Center, TFRI
 National Taiwan University
 Tunghai University
- Sheng-Hsin Su (TFRI)
 Census team of Fushan FDP
 Students from many schools

Explanatory variables in new seedling survival and growth models

	Data			
Parameter	Range	Mean	Median	
Census interval (days)	59 - 210	93.60	92	
Initial height (cm)	0.3 - 38	6.05	4	
Seedling density (m ⁻²)				
Total	1 - 1049	36.84	12	
Conspecific	1 - 1041	26.17	5	
Heterospecific	0 - 1048	10.67	3	
Adult stem number within 10 m				
Total	21 - 448	212.60	230	
Conspecific	0 - 81	20.21	8	
Heterospecific	20 - 447	192.40	207	

Seedling survival models (Species with >100 recruits)

Model type	Model	Variables included	No. species
Density independent	0	a + b INT + c HT	3
Effect of conspecific density = effect of heterospecific density	1	a + b INT + c HT + d S _{total}	0
	2	a + b INT + c HT + f T _{total}	2
	3	$a + b \text{ INT} + c \text{ HT} + d \text{ S}_{\text{total}} + f \text{ T}_{\text{total}}$	1
Effect of conspecific density ≠ effect of heterospecific density	4	$a + b$ INT + c HT + d_1 S _{con} + d_2 S _{het}	1
	5	$a + b \text{ INT} + c \text{ HT} + f_1 \text{ T}_{\text{con}} + f_2 \text{ T}_{\text{het}}$	0
	6	$a + b$ INT + c HT + d_1 S _{con} + d_2 S _{het} + f T _{total}	1
	7	$a + b$ INT + c HT + d S _{total} + f_1 T _{con} + f_2 T _{het}	0
	8	$a + b$ INT + c HT + d_1 S _{con} + d_2 S _{het} + f_1 T _{con} + f_2 T _{het}	2