Stocks and dynamics of Coarse Woody Debris (CWD) in a lowland rainforest, Nanjenshan, southern Taiwan

Chia-Wen Chen, Chang-Fu Hsieh, Kuo-Jung Chao

2009.11.19.

Definition of Coarse woody debris (CWD)

Types

□ Standing dead trees (Snags)

□ Downed boles (Logs)

□ Large branches

□ Coarse dead roots

Sizes (Typical minimum diameters)

 \Box Above 2 cm

□ Above 10 cm in some tropical forests

- □ 7.5-15 cm in western North American
- \square 2.5-7.5 cm elsewhere

(Harmon et al., 1986)

Roles of CWD in forest ecosystem

- Offering habitats for plants and animals
- Sources of nutrient cycle in forest
- Carbon budget

(Harmon et al., 1986)

The importance of CWD in tropical forest carbon balance

The importance of CWD in tropical forest carbon balance

Disturbances and CWD

El Nino Southern Oscillation □ Tropical forests in Amazon □ CWD pool increase \Box Net carbon release (Rice et al., 2004) Hurricanes □ Mangrove forest in south Florida □ Maximum CWD volume with the greatest wind speed

(Krauss et al., 2005)

Disturbances in Taiwan

Average 3.5 typhoons per year
 Influences of typhoon in forests

 Litter fall increase
 Crown damage

⁽莊, 2005)

Characteristics of Nanjenshan

- Lowland tropical forests
 Major disturbance
 Summer: typhoon
- Temperature: 22.7 °C
- Precipitation: 3251.96 mm
- Area: 140 m × 150 m, 2.1 ha
- Latitude: 225-275 m

Objectives

- What are the stocks of CWD in Nanjenshan lowland forest?
 - □ What is the status of carbon balance in Nanjenshan by comparing the flux of CWD and living biomass?
- What is the seasonal input pattern of CWD?

What are the stocks of CWD in Nanjenshan lowland forest?

Definition of CWD

Diameter
More than 1 cm
Types of CWD
Fallen dead wood
Standing dead wood
Branches

Sampling for volume

- Types of CWD
 Sampling methods
 □ Fallen dead wood & □ Line intersect
 branches
 - □ Standing dead wood → *Strip plot sampling*

Position of five transects

Sampling of CWD

Line transect

- □ Fallen dead wood
- □ Recording diameters

Strip plot sampling

cher/howto/

- □ Standing dead wood (snag)
- □ Width:10 m
- Recording diameters and length of trunk and branch

Analysis of Volume

Fallen wood

Recording diameter Formula

$$V = \frac{\pi^2 \sum (d_i)^2}{(8 \times L)}$$

V: volume of wood per unit area (m³/ha) d_i: piece diameter (cm) L: length of sample line (m)

(van Wagner, 1968)

Standing dead wood (snag)

Diameter and length of trunk and branch Formula

http://www.ofnc.ca/fletcher/howto/htsnags.php

Wood density

Decay level

Level	Hardness	Feature
1	Hard, solid	Fresh, small branches attached
2	Hard, solid	Slightly decayed, some branches attached
3	Non-solid	Obviously decayed, bark not intake
4	Soft, loose	At least ¹ / ₂ biomass remaining
5	Soft, rotten	Easily collapsed

Wood density

- Wood samples collected near the plot margins
 Classified by five decay levels
 Classified by three diameter sizes
 Small: 1-2 cm
 - Median: 2-10 cm
 - Large: $\geq 10 \text{ cm}$
- Bulk density
 - □ Measuring volume
 - □ Dried necromass

Necromass

• Necromass

M (Mg ha⁻¹) = Volume × wood density ρ

V (m³): external CWD volume

•The sampling standard error (E_N) of CWD by the line-intercept

$$E_N = E_\rho V_d + \rho_d E_v$$

- $\rho_{\rm d}$: density of each decay class
- V_d : volume of each decay class
- **E**_N: sampling standard error
- \mathbf{E}_{ρ} : standard errors in density
- $\mathbf{E}_{\mathbf{V}}$: standard errors in volume

Wood density

Wood densities (mean ± 1 SE, g · cm⁻³) of coarse woody debris in Nanjenshan

Decay Level	Wood density	Sample size
1	0.40 (± 0.11)	32
2	0.35 (± 0.05)	52
3	0.27 (± 0.07)	89
4	0.19 (± 0.04)	55
5	0.15 (± 0.07)	11

Necromass in Nanjenshan

Fallen dead wood		Standing dead wood	1
Decay level	Necromass (Mg · ha ⁻¹)	Decay level	Necromass $(Mg \cdot ha^{-1})$
1	1.13 (± 0.35)	1	0.15 (± 0.04)
2	3.15 (± 0.52)	2	0.15 (± 0.04)
3	2.26 (± 0.64)	3	0.13 (± 0.05)
4	3.67 (± 1.17)	4	0.03 (± 0.01)
5	0.20 (± 0.11)	5	0.01 (± 0.01)
Total	10.41	Total	0.47

Comparing with other tropical forests

Less than most of tropical forests

(Baker et al. 2007)

What is the seasonal input pattern of CWD?

Seasonal Input of CWD

Resurveying every 3 months
April
July
October
Next January
Recording the new wood on the line

Recording the new wood input on the line

Part2: seasonal input

Decay Level vs. Input Necromass

Part2: seasonal input

Size Class vs. Numbers of CWD

Part2: seasonal input

Size Class vs. Seasonal Input Necromass

Discussion

Two typhoons passed through Taiwan in summer.

Date	Typhoon	
2009.08.08.	莫拉克(MORAKOT)	中度
2009.10.05.	芭瑪(PARMA)	中度

Does the northeast monsoon cause another peak necromass input in winter?

Conclusion

- Total necromass is 10.88Mg ha⁻¹ in Nanjenshan, and less than other tropical forests.
 - □ And what is the status of carbon balance in Nanjenshan?
- Input necromass increased during July to October.

References

- Baker, J. Q., E. N. Honorio Coronado, O. L. Phillips, J. Martin, G. M. F. van der Heijden, M. Garcia and J. S. Espejo. 2007. Low stocks of coarse woody debris in a southwest Amazonian forest. Oecologia 152: 495-504.
- Chambers, J. Q., J. Santos, R. J. Ribeiro, N. Higuchi. 2001. Tree damage, allometric relationships, and aboveground net primary production in a dense tropical forest. For. Ecol. and Manag. **152**: 73-84.
- Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack, JR. and K. W. Cummins. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15: 133-302..
- Krauss, K. W., T. W. Doyle, R. R. Twilley, T. J. Smith, K. R. T. Whelan, and J. K. sullivan. 2005. Woody debris in the mangrove forests of south Florida. Biotropica. 37: 9-15.
- Palace, M., M. Keller, and H. Silva. 2008. Necromass production: studies in undisturbed and logged Amazon forests. Ecol. Appl. 18: 873-884.
- Philips, O. L., Y. Malhi, N. Higuchi, W. F. Laurance, P. V. Nunez, R. M. Vasquez, S. G. Laurance, L. V. Ferreira, M. Stern, S. Brown, J. Grace. 1998. Changes in the carbon balance of tropical forests: evidence from long-term plot. Science. 282: 439-441.
- Rice, A.H., E.H. Pyle, S.R. Saleska et al. 2004. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecol. Appl. 14: S55-S71.
- Van Wagner, C. E. 1968. The line intersect method in forest fuel sampling. For. Sci. 14: 19-26.
- 莊宜家,2005,颱風對南仁山森林生態系樹冠干擾之探討。國立屏東科技大學熱帶農業暨國際合作研究所碩士論文。
- 趙國容,2000,南仁山低地雨林木本植物社會之短期動態。國立台灣大學植物學 研究所碩士論文。
- 趙國容、趙偉村、陳凱眉,2008,台灣南仁山亞熱帶低地雨林森林動態與模式。
 行政院農業委員會林務局委託研究計畫 97-00-2-02。

Thanks for your listening. 敬請指教

Volume

Fallen wood

Recording diameterFormula

$$V = \frac{\pi^2 \sum (d_i)^2}{(8 \times L)}$$

V: volume of wood per unit area (m³/ha) d_i : piece diameter (cm) L: length of sample line (m)

(Van Wagner,)

Standing dead wood (snag)

Recording basal diameter

top diameter
length

🗆 Formula

$$V = L \left[\frac{\pi (D_1/2)^2 + \pi (D_2/2)^2}{2} \right]$$

L : the length of snag (m) D : diameter, at either end (m)

http://www.ofnc.ca/fletcher/howto/htsnags.php

The factors

- Environmental factors
 Moisture (Delaney et al., 1998)
 - Moist forest 42.33 Mg/ha
 - Dry-moist forest 34.5 Mg/ha
 - Very dry forest 2.43 Mg/ha
 - □ Topography and Soil nutright

The factors

■ Forest dynamics (Chao et al., 2009)

Necromass in *terra firma* Amazonian forests (Chao et al., 2009) **34**

The factors

Disturbance events
ENSO
Logging
Fire
Hurricane

be.

Studies in Tropical RainforestsVariation

□ Mean stock from 0 Mg/ha to 80 Mg/ha

- Range from 18% 33% of aboveground live biomass (Palace et al., 2008)
- □ Range from 2% 40% of the aboveground carbon stock (Palace et al., 2008)

Peak branch fall in typhoon season

(莊, 2005)

Temporal input patterns

Long TermSuccession

Annual

Seasonal

Importance for carbon balance

(Pyle, 2008)

Seasonal Input of CWD

Recording the new wood input on the line

The Role of CWD in tropical rain forest carbon cycles

Carbon stock

Live tree biomass > fallen CWD > standing CWD > fine litter

Annual inputs to forest floor
Fine litter > CWD

Turnover time

Fine litter < standing CWD = fallen CWD < live tree biomass

Seasonal Input of CWD

Periods of surveying

Volume

Fallen wood

Strip plot sampling

- \Box Standing dead wood (snag)
- □ Width:10 m
- □ Total length: 500 m

(the same as Line intercept)

http://www ofnc.ca/flet

cher/howto/

Volume

Standing dead wood (snag)

Recording basal diameter

 top diameter
 length

 the largest branch diameter and length

 Formulae

$$V = L \left[\frac{\pi (D_1/2)^2 + \pi (D_2/2)^2}{2} \right]$$

L : the length of snag (m) D : diameter, at either end (m)

The importance of CWD in tropical forest carbon balance

The importance of CWD in tropical forest carbon balance

international and an and an

http://www.ofnc.ca/fletcher/howto/htsnags.php

World

Discussion

Date	Typhoon	
2009.08.08.	莫拉克(MORAKOT)	中度
2009.10.05.	芭瑪(PARMA)	中度

Part2: *seasonal input*

Volume

Standing dead wood

Recording diameters and length of trunk and branches

Smalian's formulae

(Phillip 1994, cited in Chao et al., 2008)

$$V = L \left[\frac{\pi (D_1/2)^2 + \pi (D_2/2)^2}{2} \right]$$

L : the length of snag (m) D : diameter, at either end (m)

Fushan Subtropical Broadleaf Forest Biomass and nutrient content of woody debris (Lin at el. 2003)