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Topics

e Flowering patterns in Fushan forest

e Potential flowering triggers




Fushan seed trap porject

e 106 seed traps in the Fushan Forest Dynamics Plot
e Established in Aug. 2002

Surface area: 0.5 m?

Trap mesh: 1.6 mm

e All reproductive parts (flowers, fruit, seeds) were sorted,
counted, and 1dentified to species each week

o Sept. 2002 — Aug. 2008 (313 weeks)




Quantitative flowering records

e Flower production

Percentage of traps with flower collected in each month for
cach species

e All analyses were restricted to species with > 10 records
and encountered 1n > 5 traps.

e 406 species were selected.



Flowering patterns in Fushan




Introduction

e Flower anthesis usually occurs during short time windows.
(Ashton et al. 1988; van Schaik et al. 1993; Wright & Calderon 1995 )

e Intraspecific flowering synchronization
High levels of gene flow (Augspurger 1983; Sakai 2002)

e Interspecific flowering synchronization

Predator satiation & shared pollinators (Janzen 1971; Ashton et al.
1988; Sakai 2002)

Phylogenetic constrains (Wright et al. 1995; Bawa et al. 2003)

Taxonomically related species exhibited similar flowering
patterns.



Methods

e Mecan flowering dates
Vector algebra (Batschelet 1981; Wright and Calderon 1995)
Mean vector: angle & length (r)

e Intraspecific synchronization
Significance of vector length
Permutation test (2000 simulations)

H,: Flowering events occur randomly in time.

Month order of flowering records was randomly
shuffled.



Mean flOwering dates n=46 species
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Concentration of flowering

e All vector lengths were significantly different from flowering
records randomly distributed in time.



g production (%)

Phylogenetic constrains In
flowering patterns

e Families with > 2 species

e Paired comparisons of all species within each family
Pearson’s r (permutation test, Manly 2006)
Positive correlation coefficient
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Flowering patterns of taxonomically
related species

e 9 families, 29 species and 38 paired comparisons

No. of spp. No. 9f Signiﬁc.ant

comparisons correlation
Asclepiadaceae 2 1 0
Fagaceae 3 3 1
Lauraceae 5 10 1
Melastomataceae 3 3 2
Myrsinaceae 4 6 3
Rosaceae 2 1 0
Rubiaceae 5 10 3
Symplocaceae 2 1 0
Theaceae 3 3 0
Total 29 38 10




Phylogenetic constrains In
flowering patterns

e Mean flowering times of each family

Lump the species of the same family together

Significance of vector lengths

Permutation test, 2000 simulations

Pr. of finding a family mean vector from random species
combination

Re-sampling

2000 simulations



Mean flowering dates of each family
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Mean flowering dates of each family

e 4 out of 6 families (Asclepiadaceae, Fagaceae,
Melastomataceae, Myrsinaceae) were significantly different
from H,, which the species sets were randomly assembled.
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Potential flowering triggers




Temporal patterns of flowering
behaviors

e Quantitative flowering data are one of the best variables
estimate the impact of (anthropogenic) changes in
ecosystems. (Chapman et al. 2005; Wright & Calderon 2006)

e Understanding the temporal structures of flowering
patterns might help us to 1dentifying the potential
flowering triggers.

e Mechanisms that generate the temporal patterns:
(Borcard & Legendre 2002)

Forcing variables (environmental or biotic control)
Autocorrelation



Potential flowering triggers

e Climatic variables -
e Cross-correlation

Temperature (up to 4-month lag)
Lowest temperature
Highest temperature e Forward selection

Mean lowest temperature
Mean difference between daily minimal and maximal temperature

Rainfall
Irradiance

Photoperiod (obtained from Taiwan Central Weather Bureau)
Day length
Change 1n day length
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No. of species

Potential flowering triggers

e 38 species were related to 1 variable.
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pcoord4 pcoord3 pcoord2 pcoord1

pcoord5

Principal coordinates of neighbour
matrices (PC N |\/|) (Borcard & Legendre 2002)

e 43 orthogonal PCNM base functions were obtained for 72

month study period.
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Variation partitioning

(Borcard et al. 1992; Legendre & Legendre 1998)

Flowering
records

Explanatory table

Explanatory table

Environmental data
matrix X

[d] = Residuals

PCNM
matrix W




Example: Myrsine seguinii

Forward selection
(Miller & Farr 1971)

24 PCNM base functions were
selected out of 48 (permutation
test, 999 permutations).

The PCNMs were arbitrarily
divided into 3 submodels.

The submodels are orthogonal
to one another.

Significant wavelengths
(autocorrelation analysis):
Broad-scale: 24 month
Medium-scale: 12 month
Fine-scale: 6 month
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Variation partitioning
Myrsine seguinii

Day length (lag=3)
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Variation explained by PCNM models | 8222°
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No. of species

Major PCNMSs (rz> 0.05)
for flowering patterns

50

45 -
40 -
35 -
30 -
25
20 -
15 -
10 -

5
0

L

6.00 2.00 1.20 0.86 0.67 055 046 040 035 0.32 0.29 0.26

Period



No. of species

Major PCNMS (r2> 0.05)
for selected climatic variables
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Summary

e Flowering patterns of Fushan exhibits a clear seasonality.
e All species showed intraspecific synchronized flowering.

e Flowering patterns were not strongly constrained by
phylogeny.

e Climatic variables could explained about 30% variation 1n

flowering patterns and were related to medium-scale
PCNMs.

e More data were required to explained broad- and fine-
scale PCNMs.
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