Flowering patterns in a subtropical rain forest, Fushan, Taiwan

Chia-Hao Chang-Yang^{1,2} Chia-Ling Lu¹ I-Fang Sun² Chang-Fu Hsieh¹

¹ National Taiwan University ² Tunghai University

Topics

- Flowering patterns in Fushan forest
- Potential flowering triggers

Fushan seed trap porject

- 106 seed traps in the Fushan Forest Dynamics Plot
 - Established in Aug. 2002
 - Surface area: 0.5 m²
 - Trap mesh: 1.6 mm
 - All reproductive parts (flowers, fruit, seeds) were sorted, counted, and identified to species each week
 - Sept. 2002 Aug. 2008 (313 weeks)

Quantitative flowering records

- Flower production
 - Percentage of traps with flower collected in each **month** for each species
- All analyses were restricted to species with ≥ 10 records and encountered in ≥ 5 traps.
- 46 species were selected.

Flowering patterns in Fushan

Introduction

- Flower anthesis usually occurs during short time windows. (Ashton et al. 1988; van Schaik et al. 1993; Wright & Calderon 1995)
- Intraspecific flowering synchronization
 - High levels of gene flow (Augspurger 1983; Sakai 2002)
- Interspecific flowering synchronization
 - Predator satiation & shared pollinators (Janzen 1971; Ashton et al. 1988; Sakai 2002)
 - Phylogenetic constrains (Wright et al. 1995; Bawa et al. 2003)
 - Taxonomically related species exhibited similar flowering patterns.

Methods

- Mean flowering dates
 - Vector algebra (Batschelet 1981; Wright and Calderon 1995)
 - Mean vector: angle & length (r)
- Intraspecific synchronization
 - Significance of vector length
 - Permutation test (2000 simulations)
 - H_0 : Flowering events occur randomly in time.
 - Month order of flowering records was randomly shuffled.

Mean flowering dates n = 46 species

• All vector lengths were significantly different from flowering records randomly distributed in time.

Phylogenetic constrains in flowering patterns

- Families with ≥ 2 species
- Paired comparisons of all species within each family
 - Pearson's r (permutation test, Manly 2006)
 - Positive correlation coefficient

Flowering patterns of taxonomically related species

• 9 families, 29 species and 38 paired comparisons

	No. of spp.	No. of comparisons	Significant correlation
Asclepiadaceae	2	1	0
Fagaceae	3	3	1
Lauraceae	5	10	1
Melastomataceae	3	3	2
Myrsinaceae	4	6	3
Rosaceae	2	1	0
Rubiaceae	5	10	3
Symplocaceae	2	1	0
Theaceae	3	3	0
Total	29	38	10

Phylogenetic constrains in flowering patterns

- Mean flowering times of each family
 - Lump the species of the same family together
 - Significance of vector lengths
 - Permutation test, 2000 simulations
 - Pr. of finding a family mean vector from random species combination
 - Re-sampling
 - 2000 simulations

Mean flowering dates of each family

Mean flowering dates of each family

 4 out of 6 families (Asclepiadaceae, Fagaceae, Melastomataceae, Myrsinaceae) were significantly different from H₀, which the species sets were randomly assembled.

Potential flowering triggers

Temporal patterns of flowering behaviors

- Quantitative flowering data are one of the best variables estimate the impact of (anthropogenic) changes in ecosystems. (Chapman et al. 2005; Wright & Calderon 2006)
- Understanding the temporal structures of flowering patterns might help us to identifying the potential flowering triggers.
- Mechanisms that generate the temporal patterns: (Borcard & Legendre 2002)
 - Forcing variables (environmental or biotic control)
 - Autocorrelation

Potential flowering triggers

- Climatic variables
 - Temperature
 - Lowest temperature
 - Highest temperature
 - Mean lowest temperature

- Mean difference between daily minimal and maximal temperature
- Rainfall
- Irradiance
- Photoperiod (obtained from Taiwan Central Weather Bureau)
 - Day length
 - Change in day length

Climatic variables

Data source:

Fushan Botanical Garden weather station & Taiwan Central Weather Bureau

Potential flowering triggers

• 38 species were related to 1 variable.

Principal coordinates of neighbour matrices (PCNM) (Borcard & Legendre 2002)

• **48** orthogonal PCNM base functions were obtained for 72 month study period.

HIGH

LOW

Variation partitioning

(Borcard et al. 1992; Legendre & Legendre 1998)

Example: Myrsine seguinii

Forward selection

(Miller & Farr 1971)

24 PCNM base functions were selected out of 48 (permutation test, 999 permutations).

The PCNMs were arbitrarily divided into 3 submodels.

The submodels are orthogonal to one another.

Significant wavelengths (autocorrelation analysis): Broad-scale: 24 month Medium-scale: 12 month Fine-scale: 6 month

Variation partitioning

Myrsine seguinii

Variation explained by PCNM models & climatic variables

Major PCNMs (R² > 0.05) for flowering patterns

Period

Major PCNMs (R² > 0.05) for selected climatic variables

Period

Summary

- Flowering patterns of Fushan exhibits a clear seasonality.
- All species showed intraspecific synchronized flowering.
- Flowering patterns were not strongly constrained by phylogeny.
- Climatic variables could explained about 30% variation in flowering patterns and were related to medium-scale PCNMs.
- More data were required to explained broad- and fine-scale PCNMs.

Acknowledgements

- Funding:
 Taiwan Forestry Research Institute
 Taiwan Forestry Bureau

 Logistical support

 Fushan Research Center, TFRI
 National Taiwan University
 Tunghai University
- Sheng-Hsin Su
- **Census team of Fushan FDP**
- Students from many schools