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Probability theory of Bayesian statistics

Basic probability

Consider an event, A,

Pr(A): probability of event A.

Also written as [A],

Pr(A) = [A] ∈ [0, 1].

Probability must be between 0 and 1.
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Probability theory of Bayesian statistics

Conditional probability

Consider two events, A and B,

[A]: probability of event A,

[B]: probability of event B.

Joint probability,

[A ∩B]: probability of both events occurring together.

Conditional probability theory (and intuition) tells us that
[A ∩B] = [B]× [A|B].

It must also be true that [B ∩A] = [A]× [B|A].
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Probability theory of Bayesian statistics

Bayes’ theorem

Then we have

[A ∩B] = [B]× [A|B],

[B ∩A] = [A]× [B|A].

Thomas Bayes (1701?-1761) noticed that [A ∩B] = [B ∩A], therefore it
must be true that [B]× [A|B] = [A]× [B|A].

Division of both sides by [B] gives Bayes’ theorem.

[A|B] = [A]× [B|A]
[B] .
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Probability theory of Bayesian statistics

Application: Fungal infection and seedling survival

Hersh et al. (2012, Ecology) planted seedlings of six species in 60 plots.
They observed survival and assayed fungal infection on cultures and with
DNA sequencing.

Suppose

fungal infection rate is θ—overall infection in the environment,
seedling survival rate if not infected is s0—“health” seedlings, natural
mortality,
seedling survival rate if infected is s1—“unhealth” seedlings, natural
mortality + infection.

Q: What is the infection rate if the seedling survives?
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Probability theory of Bayesian statistics

Application: Fungal infection and seedling survival

A: Let I = 1 be infection event (I = 0 not infected), and S = 1 be survival
event (S = 0 if dead). Then

fungal infection rate is θ: [I = 1] = θ,

seedling survival rate if not infected is s0: [S = 1|I = 0] = s0,

seedling survival rate if infected is s1: [S = 1|I = 1] = s1.
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Probability theory of Bayesian statistics

Application: Fungal infection and seedling survival

Use Bayes’ theorem,

[I = 1|S = 1] = [S=1|I=1][I=1]
[S=1] ,

= [S=1|I=1][I=1]
[S=1|I=1][I=1]+[S=1|I=0][I=0] ,

= s1θ
s1θ+s0(1−θ) .

Note that [I = 1] = θ, so [I = 1] 6= [I = 1|S = 1].

Why? Because we updated our belief in fungal infection by observing
seedling survival.
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Probability theory of Bayesian statistics

Application: Fungal infection and seedling survival

Revisit

[I = 1|S = 1] = [S = 1|I = 1][I = 1]
[S = 1|I = 1][I = 1] + [S = 1|I = 0][I = 0] .

[I = 1] is our prior belief,
[S = 1|I = 1] and [S = 1|I = 0] are our experiment,
[I = 1|S = 1] is our posterior estimate, after we update our prior belief
using data collected from experiment. Our posterior estimate is
different from our prior belief, because we gained knowledge through
the experiment.

Very simple example, but the idea carries over all Bayesian statistics.
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Frequentist approach to linear models

Frequentist approach to linear models
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Frequentist approach to linear models

Frequentist vs. Bayesian

Frequentist:

Data are a repeatable random sample—there is a frequency.
Underlying parameters remain constant during this repeatable process.
Parameters are fixed.

Bayesian:

Data are observed from the realized sample.
Parameters are unknown and described probabilistically.
Data are fixed.
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Frequentist approach to linear models

Linear model as an example

Linear models are the basic building blocks for almost all statistical models,
for example,

linear regression,
analysis of variance (ANOVA).
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Frequentist approach to linear models

Simple linear regression

For the ith response variable yi and predictor xi,

yi = β0 + β1xi + εi, i = 1, · · · , n.

Assume the random error is distributed as normal (or Gaussian),

εi ∼ N(0, σ2).

Kai Zhu (UC Santa Cruz) Bayesian data analysis in ecology CForBio 2020 14 / 71



Frequentist approach to linear models

Expand equations

yi = β0 + β1xi + εi, i = 1, · · · , n.

becomes

y1 = β0 + β1x1 + ε1
y2 = β0 + β1x2 + ε2
... ...
yn = β0 + β1xn + εn

Note that there is only a fixed β0 and a fixed β1—also called fixed effects.
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Frequentist approach to linear models

Normal distribution in theory

x1 ∼ N(µ = 0, σ2 = 0.2),
x2 ∼ N(µ = 0, σ2 = 1),
x3 ∼ N(µ = −2, σ2 = 0.5).

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

D
en

si
ty

Kai Zhu (UC Santa Cruz) Bayesian data analysis in ecology CForBio 2020 16 / 71



Frequentist approach to linear models

Normal distribution in practice

Q: How to simulate (or “generate using computer”) random numbers from
normal distribution?

A: Use rnorm function. r means random number generator.
x <- rnorm(n = 100, mean = 0, sd = 1)

n: how many samples to simulate,
mean: µ parameter,
sd: σ (not σ2) parameter.

Shortcut:
x <- rnorm(100, 0, 1)
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Frequentist approach to linear models

Normal distribution in practice

Q: How to check if simulated numbers are really normal?
x[1:4] # display first 4 values

## [1] 1.09000346 -2.63493707 0.06108367 -1.15532931

You can see them, but still can’t tell. . .

A: Use histogram.
hist(x)
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Frequentist approach to linear models

Normal distribution in R

Histogram of x
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Frequentist approach to linear models

The problem

yi = β0 + β1xi + εi, εi ∼ N(0, σ2).

What are data (known) and what are parameters (unknown)?

Knowns are
yi: response—e.g., tree growth,
xi: covariate—e.g., temperature.

Unknowns are
β0, β1: regression coefficent, intercept and slope—we want to estimate:
how much do trees respond to temperature?
σ2: variance parameter—sometimes we want to know: how accurate are
our observations?
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Frequentist approach to linear models

Frequentist solution

Maximum likelihood estimate (MLE):

Likelihood is the probability of observing data given parameter,

[yi, xi | β0, β1, σ].

Maximum likelihood estimate (MLE) method finds the parameters that
give the maximum value of likelihood,

β̂0, β̂1, σ̂ ← max[yi, xi | β0, β1, σ].
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Frequentist approach to linear models

Frequentist solution

MLE solution for linear regression:

β̂1 =
∑n

i=1(xi−x̄)(yi−ȳ)∑n

i=1(xi−x̄)2

β̂0 = ȳ − β̂1x̄
σ̂ = · · ·
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Frequentist approach to linear models

Application: Simulated tree growth

Simulation is an important tool to check your understanding. It starts with
prescribed parameters to generate artifial data. Then you only use the data
to estimate parameters (pretending you don’t know the prescribed
parameters you started with). See if your estimated parameter is close to
your prescribed (true) parameters.

Suppose you went to 100 sites to measure tree growth rate. The annual
temperature is 22 °C on average, and 5 °C of standard deviation. Now,
suppose trees grow 5 mm/yr at 0 °C, and 1 mm/yr with every 1 °C increase
in temperature. Your sampling error is 1 mm/yr of standard deviation.

Q: What would tree growth rate be?
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Frequentist approach to linear models

Application: Simulated tree growth

Translate to math

i = 1, · · · , 100,
xi ∼ N(µ = 22, σ = 5),
β0 = 5,
β1 = 1,
σ = 1.
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Frequentist approach to linear models

Application: Simulated tree growth

Translate to R
n.tree <- 100
ann.temp <- rnorm(n = n.tree, mean = 22, sd = 5)

sim.tree.growth <- function(n, x, b0, b1, s) {
e <- rnorm(n, 0, s)
y <- b0 + b1 * x + e

}

tree.grow <- sim.tree.growth(
n = n.tree, x = ann.temp,
b0 = 5, b1 = 1, s = 1

)
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Frequentist approach to linear models

Application: Simulated tree growth
Check your simulation
plot(ann.temp, tree.grow,

xlab = "Annual temperature (deg C)",
ylab = "Tree growth (mm/yr)"

)
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Frequentist approach to linear models

Application: Simulated tree growth

Estimate parameters, using the MLE solution,

β̂1 =
∑n

i=1(xi−x̄)(yi−ȳ)∑n

i=1(xi−x̄)2

β̂0 = ȳ − β̂1x̄
.

esti.tree.growth <- function(x, y) {
x.bar <- mean(x)
y.bar <- mean(y)
b1.hat <- sum((x - x.bar) * (y - y.bar)) /

sum((x - x.bar)^2)
b0.hat <- y.bar - b1.hat * x.bar
c(b0.hat, b1.hat) # concatenate output

}
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Frequentist approach to linear models

Application: Simulated tree growth

Estimate parameters, using the MLE solution,
esti.tree.growth(ann.temp, tree.grow)

## [1] 4.770324 1.015446

What are the true values?

b0 = 5, b1 = 1.

We are pretty close to the true values.
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Frequentist approach to linear models

Application: Simulated tree growth

An easy way to do in R
lm(tree.grow ~ ann.temp)

##
## Call:
## lm(formula = tree.grow ~ ann.temp)
##
## Coefficients:
## (Intercept) ann.temp
## 4.770 1.015

Identical to our function! This is precisely how R implements linear model.

Kai Zhu (UC Santa Cruz) Bayesian data analysis in ecology CForBio 2020 29 / 71



Bayesian approach to linear models

Bayesian approach to linear models
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Bayesian approach to linear models

Bayesian solution

Bayesian statistics assumes a prior distribution for parameters (usually
vague, meaning no information), uses Bayes’ theorem to update the prior
distribution by integrating likelihood from data, and eventally obtains
posterior distribution for parameters.

In our case, the likelihood is [yi, xi | β0, β1, σ].

The prior is [β0, β1, σ].

The posterior [β0, β1, σ | yi, xi] =?
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Bayesian approach to linear models

Bayesian solution

According to Bayes’ theorem,

[β0, β1, σ | yi, xi] = [yi, xi | β0, β1, σ][β0, β1, σ]
[yi, xi]

.

We don’t know [yi, xi], but we know any distribution, including the
posterior, has to sum to one. So we can ignore denominator, making the
equation proportional.

[β0, β1, σ | yi, xi] ∝ [yi, xi | β0, β1, σ][β0, β1, σ].
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Bayesian approach to linear models

Bayesian solution

We use non-informative priors because we have no knowledge,

β0 ∼ N(0, τ0 = 1/σ2
0): usually τ0 is very small (σ0 is very large),

β1 ∼ N(0, τ1 = 1/σ2
1): usually τ1 is very small (σ1 is very large),

1
σ2 ∼ G(a, b)1: usually a, b are very small.

The posterior solution is too complicated; it involves numerical simulation.

Fortunately, we have numerical methods such as Markov chain Monte Carlo
(MCMC). We will not get into details; we will use software JAGS.

1G stands for Gamma distribution.
Kai Zhu (UC Santa Cruz) Bayesian data analysis in ecology CForBio 2020 33 / 71



Bayesian approach to linear models

JAGS

Of the many MCMC methods, we focus on Gibbs sampler, implemented as
BUGS (Bayesian inference Using Gibbs Sampling) language.

JAGS (Just Another Gibbs Sampler) is a dialect of BUGS language, which

works closely with R, similar syntax,
is very flexible, allowing users to write their own models.

Other BUGS dialects are WinBUGS, OpenBUGS.

Other MCMC software includes Stan, INLA.
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Bayesian approach to linear models

JAGS and R

JAGS can be downloaded at http://mcmc-jags.sourceforge.net.

Also install packages in R, so that R can “talk to” JAGS.
install.packages("R2jags")
install.packages("mcmcplots")

We will be using JAGS within R.
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Bayesian approach to linear models

Model recap

The model is

yi = β0 + β1xi + εi, εi ∼ N(0, σ2),

which can be rewritten as (likelihood)

yi ∼ N(µi, σ2 = 1/τ),
µi = β0 + β1xi.

We will use these priors

β0 ∼ N(0, τ ′ = 10−3),
β1 ∼ N(0, τ ′ = 10−3),
τ ∼ G(10−3, 10−3).
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Bayesian approach to linear models

JAGS

Model
sim.mod <- function() {

# likelihood
for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau) # tau = 1/sigma2
mu[i] <- b0 + b1 * x[i]

}

# priors
b0 ~ dnorm(0, 1.0E-3)
b1 ~ dnorm(0, 1.0E-3)
tau ~ dgamma(1.0E-3, 1.0E-3)

}
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Bayesian approach to linear models

JAGS

Data (known) are
sim.dat <- list()
sim.dat$n <- n.tree
sim.dat$y <- tree.grow
sim.dat$x <- ann.temp

Parameters (unknown)—we assumed vague priors and want to know
posteriors,
sim.par <- c("b0", "b1", "tau")
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Bayesian approach to linear models

JAGS
Fit the model
library(R2jags)
sim.fit <-

jags(
data = sim.dat,
model.file = sim.mod,
parameters.to.save = sim.par,
n.chains = 1, n.iter = 1e3

)

## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 100
## Unobserved stochastic nodes: 3
## Total graph size: 406
##
## Initializing model
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Bayesian approach to linear models

JAGS

Summarize the results
sim.fit

## mu.vect sd.vect
## b0 4.774 0.468
## b1 1.015 0.022
## tau 0.977 0.147
## deviance 287.812 2.450
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Bayesian approach to linear models

MCMC diagnostics

Check covergence
mcmcplot(sim.fit)
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Bayesian approach to linear models

MCMC diagnostics

Trace plot
traplot(sim.fit)
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Bayesian approach to linear models

MCMC diagnostics

Density plot
denplot(sim.fit)
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Bayesian approach to linear models

Compare results

Simulation (true values):

β0 = 5, β1 = 1.

Frequentist (MLE) approach:

## b0 b1
## 4.770 1.015

Bayesian (JAGS) approach:

## b0 b1
## 4.774 1.015
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient

Zhu et al. (2014, Global Change Biology) examined the relationship
between tree seedling abundance and climate in eastern US forests. Here we
use a subset of the data, focusing on a species, loblolly pine (Pinus taeda).

Read data
raw.dat <- read.csv("data/seedling.csv")

seed: seedling density (#/ha),
tmp: annual temperature (°C).
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient
Explore data
plot(raw.dat$tmp, raw.dat$seed,

ylab = "Seedling density (#/ha)",
xlab = "Temperature (deg C)")
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient
Explore data
hist(raw.dat$seed, main = "",

xlab = "Seedling density (#/ha)")
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient
Transform data (log)
plot(raw.dat$tmp, log(raw.dat$seed),

ylab = "Seedling density (log #/ha)",
xlab = "Temperature (deg C)")
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient

Here we use a simplified model,

yi = β0 + β1xi + β2x
2
i + εi, εi ∼ N(0, σ2),

where

yi: log-transformed seedling density (#/ha) in region i,
xi: temperature (°C) in region i.

Q: How to fit data to this model in JAGS and R?
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient

The model

yi = β0 + β1xi + β2x
2
i + εi, εi ∼ N(0, σ2),

can be rewritten as (likelihood)

yi ∼ N(µi, σ2 = 1/τ),
µi = β0 + β1xi + β2x

2
i ,

and priors

β0, β1, β2 ∼ N(0, τ ′ = 10−3),
τ ∼ G(10−3, 10−3).

Kai Zhu (UC Santa Cruz) Bayesian data analysis in ecology CForBio 2020 50 / 71



Bayesian approach to linear models

Application: Seedling recruitment along climate gradient

The model
seed.mod <- function() {

# likelihood
for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau)
mu[i] <- b0 + b1 * x[i] + b2 * x[i]^2

}

# priors
b0 ~ dnorm(0, 1.0E-3)
b1 ~ dnorm(0, 1.0E-3)
b2 ~ dnorm(0, 1.0E-3)
tau ~ dgamma(1.0E-3, 1.0E-3)

}
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient

Data
seed.dat <- list()
seed.dat$y <- log(raw.dat$seed)
seed.dat$x <- raw.dat$tmp
seed.dat$n <- nrow(raw.dat)

Parameters
seed.par <- c("b0", "b1", "b2", "tau")
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient
Fit the model
seed.fit <-

jags(
data = seed.dat,
model.file = seed.mod,
parameters.to.save = seed.par,
n.chains = 1, n.iter = 1e3

)

## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 125
## Unobserved stochastic nodes: 4
## Total graph size: 758
##
## Initializing model
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Bayesian approach to linear models

Application: Seedling recruitment along climate gradient

Check the model
mcmcplot(seed.fit)
traplot(seed.fit)
denplot(seed.fit)
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Extending models

Extending models

Kai Zhu (UC Santa Cruz) Bayesian data analysis in ecology CForBio 2020 55 / 71



Extending models

Frequentist vs. Bayesian inference

Recap

X = data (known), θ = parameter (unkonwn).

Likelihood is the probability of observing data given parameter,

[X|θ].

Frequentist inference uses maximum likelihood estimate (MLE),

θ̂ ← max[X|θ]

Here the “true” θ is a fixed, unknown value. θ̂ is our “best” guess.
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Extending models

Frequentist vs. Bayesian inference

X = data (known), θ = parameter (unkonwn).

Likelihood is the probability of observing data given parameter,

[X|θ].

Bayesian inference assumes θ is a random variable, with some prior
distribution ([θ]), and after we observe the data given parameter—likelihood
([X|θ]), we want to find the posterior distribution of parameter given data
[θ|X].
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Extending models

Frequentist vs. Bayesian inference

This process is made possible by Bayes’ theorem,

[θ|X] = [θ]× [X|θ]
[X] .

Because probability always sums to 1, we can simplify to

[θ|X] ∝ [X|θ][θ]

Computation: Markov chain Monte Carlo (MCMC). Usually difficult. Here
we use software (JAGS). Other options are WinBUGS, OpenBUGS, STAN,
INLA, LibBi, etc.
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Extending models

More complicated models

Poisson regression
Logistic regression
Nonlinear hierarchical model
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Extending models

Poisson regression

Poisson distribution for count data. The model is

yi ∼ Po(λi), λi > 0.

Link function

log(λi) = β0 + β1x1 + β2x2 + · · ·+ βpxp.

Link function is deterministic. Stochasticity comes from Poisson
distribution.
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Extending models

Poisson regression

Zhu et al. (2015, Ecology) examined tree recruitment in the eastern United
States. They found that newly recruited saplings (recruitment) have a
negative relationship with conspecific neighboring trees (conspecific negative
density dependence, CNDD).

Likelihood

yi ∼ Po(λi),
log(λi) = β0 + β1xi.

Priors

β0, β1 ∼ N(0, τ = 10−3).
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Extending models

Poisson regression

JAGS code
# likelihood
for (i in 1:n) {

y[i] ~ dpois(lam[i])
log(lam[i]) <- b0 + b1 * x[i]

}
# priors
b0 ~ dnorm(0, 1.0E-3)
b1 ~ dnorm(0, 1.0E-3)
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Extending models

Logistic regression

Bernoulli distribution for binary (e.g., presence/absence) data. The model is

yi ∼ Bi(θi), 0 < θi < 1.

Link function

logit(θi) = log
( θi
1− θi

)
= β0 + β1x1 + β2x2 + · · ·+ βpxp.

Link function is deterministic. Stochasticity comes from Bernoulli
distribution.
θi

1−θi
is also called odds ratio.
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Extending models

Logistic regression

Zhu et al. (2012, Global Change Biology) analyzed tree species occurrence
(presence/absence) across latitudes to understand climate change impact on
forest biogeography.

Model

yi ∼ Bi(θi),
logit(θi) = β0 + β1xi + β2x

2
i .

where

yi is tree occurrence,
xi is relative latitude.
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Extending models

Logistic regression

Likelihood

yi ∼ Bi(θi),
logit(θi) = β0 + β1xi + β2x

2
i .

Priors

β0, β1, β2 ∼ N(0, τ = 10−3).
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Extending models

Logistic regression

JAGS code
# likelihood
for (i in 1:n) {

y[i] ~ dbern(theta[i])
logit(theta[i]) <- b0 + b1 * x[i] + b2 * x[i]^2

}
# priors
b0 ~ dnorm(0, 1.0E-3)
b1 ~ dnorm(0, 1.0E-3)
b2 ~ dnorm(0, 1.0E-3)
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Extending models

Nonlinear hierarchical model

Widely recognized as a significant carbon sink, North American forests have
experienced a history of recovery and are facing an uncertain future. Zhu et
al. (2018, Nature Communications) combined the US and Canada forest
inventory observations to integrate two key mechanisms: the natural process
of forest growth and regeneration, and climate change that is likely to alter
the growth process. They found that climate change effectively modifies the
forest recovery trajectory, but the larger factor is that overall forest growth
is limited.

The essense of the analysis is a nonlinear hierarchical growth model.
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Extending models

Nonlinear hierarchical model

For forest biomass y with stand age x, the growth is modeled as a Monod
function (1st hierarchy),

y = µ
x

k + x
+ ε, ε ∼ N(0, σ2).

Parameters of the Monod growth then are modeled as functions of
temperature T and precipitation P (2nd hierarchy),

µ = β0 + β1T + β2P,

k = γ0 + γ1T + γ2P.
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Extending models

Nonlinear hierarchical model

for (i in 1:n.plt) { # likelihood
y[i] ~ dnorm(eta[i], tau[ft[i]])
eta[i] <- mu[i] * x[i] / (k[i] + x[i])
mu[i] <- z[i, ] %*% beta[, ft[i]]
k[i] <- z[i, ] %*% gamma[, ft[i]]

}
for (j in 1:n.ft) { # priors

tau[j] ~ dgamma(1E-3, 1E-3)
beta[1, j] ~ dunif(0, 1 / 1E-3)
beta[2, j] ~ dunif(-1 / 1E-3, 1 / 1E-3)
beta[3, j] ~ dunif(-1 / 1E-3, 1 / 1E-3)
gamma[1, j] ~ dunif(0, 1 / 1E-3)
gamma[2, j] ~ dunif(-1 / 1E-3, 1 / 1E-3)
gamma[3, j] ~ dunif(-1 / 1E-3, 1 / 1E-3)

}
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Extending models

Nonlinear hierarchical model
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Extending models

Nonlinear hierarchical model

This idea has been further explained in Zhu et al. (2019, PNAS) and
developed in Zhu (2020, New Phytologist), to propose an integrated view of
forest regrowth and modified growth due to environmental change.
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