







# Root traits as drivers of plant and ecosystem functioning

Grégoire T. Freschet CForBio presentation 2022-04-28



### Insights from a large collaborative project





### Community resources

A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements

Grégoire T. Freschet<sup>1,2</sup> (b), Loïc Pagès<sup>3</sup> (b), Colleen M. Iversen<sup>4</sup> (b), Louise H. Comas<sup>5</sup> (b), Boris Rewald<sup>6</sup> (b), Catherine Roumet<sup>1</sup> (b), Jitka Klimešová<sup>7</sup> (b), Marcin Zadworny<sup>8</sup> (b), Hendrik Poorter<sup>9,10</sup> (b), Johannes A. Postma<sup>9</sup> (b), Thomas S. Adams<sup>11</sup>, Agnieszka Bagniewska-Zadworna<sup>12</sup>, A. Glyn Bengough<sup>13,14</sup> (b), Elison B. Blancaflor<sup>15</sup> (b), Ivano Brunner<sup>16</sup> (b), Johannes H. C. Cornelissen<sup>17</sup>, Eric Garnier<sup>1</sup>, Arthur Gessler<sup>18,19</sup> (b), Sarah E. Hobbie<sup>20</sup>, Ina C. Meier<sup>21</sup> (c), Liesje Mommer<sup>22</sup> (b), Catherine Picon-Cochard<sup>23</sup>, Laura Rose<sup>2,24</sup> (b), Peter Ryser<sup>25</sup> (b), Michael Scherer-Lorenzen<sup>26</sup> (c), Nadejda A. Soudzilovskaia<sup>27</sup> (b), Alexia Stokes<sup>28</sup>, Tao Sun<sup>29</sup>, Oscar J. Valverde-Barrantes<sup>30</sup> (b), Monique Weemstra<sup>1</sup> (b), Alexandra Weigelt<sup>31</sup> (b), Nina Wurzburger<sup>32</sup> (b), Larry M. York<sup>33</sup> (b), Sarah A. Batterman<sup>34,35</sup>, Moemy Gomes de Moraes<sup>36</sup>, Štěpán Janeček<sup>37</sup> (b), Hans Lambers<sup>38</sup> (b), Verity Salmon<sup>39</sup> (b), Nishanth Tharayil<sup>40</sup> (b) and M. Luke McCormack<sup>41</sup> (b)

> Freschet *et al.* (2021) New Phytologist 232: 973–1122

| Viewpoints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| - 17 - 18 - 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Root traits as driver<br>ecosystem function<br>understanding, pitf<br>research needs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Grégoire T. Freschet <sup>1,2</sup> *, Catherine Roumet <sup>2</sup> , Louise H.<br>Comas <sup>3</sup> , Monique Weemstra <sup>2</sup> , A. Glyn Bengough <sup>4,5</sup> ,<br>Boris Rewald <sup>6</sup> , Richard D. Bardgett <sup>7</sup> , Gerlinde B. De<br>Deyn <sup>8</sup> , David Johnson <sup>7</sup> , Jitka Klimešová <sup>9</sup> , Martin<br>Lukac <sup>10,11</sup> , M. Luke McCormack <sup>12</sup> , Ina C.<br>Meier <sup>13,14</sup> , Loïc Pagès <sup>15</sup> , Hendrik Poorter <sup>16,17</sup> , Iván<br>Prieto <sup>18</sup> , Nina Wurzburger <sup>19</sup> , Marcin Zadworny <sup>20</sup> ,<br>Agnieszka Bagniewska-Zadworna <sup>21</sup> , Elison B.<br>Blancaflor <sup>22</sup> , Ivano Brunner <sup>23</sup> , Arthur Gessler <sup>24,25</sup> ,<br>Sarah E. Hobbie <sup>26</sup> , Colleen M. Iversen <sup>27</sup> , Liesje<br>Mommer <sup>28</sup> , Catherine Picon-Cochard <sup>29</sup> , Johannes A.<br>Postma <sup>16</sup> , Laura Rose <sup>1</sup> , Peter Ryser <sup>30</sup> , Michael<br>Scherer-Lorenzen <sup>31</sup> , Nadejda A. Soudzilovskaia <sup>32</sup> , Tao<br>Sun <sup>33</sup> , Oscar J. Valverde-Barrantes <sup>34</sup> , Alexandra |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

Freschet *et al.* (2021) New Phytologist 232: 1123–1158

### Key challenges in root ecology

**1.** Difficulty to define a common, unambiguous language to accurately communicate among disciplines of root science

**2.** Uneven quality and reproducibility of trait measurement methods

**3.** Relatively superficial understanding of root trait ecological meaning

**4.** Difficulty to navigate the high number of technical and practical choices associated with both lab and field studies

### Key challenges in root ecology

**5.** Current focus on few easily measured root traits, to the detriment of a wider range of traits

6. Isolation of the many different disciplines of root ecology

**7.** Poor accounting of spatial and temporal variability of root traits

**8.** Lack of explicit approach to scale-up root traits to ecosystem functioning

**Main objectives** 

### **1.** A guide of root ecology

# 2. A synthesis of root traits – ecosystem functioning relationships



| Resource acquisition    | Resource protection and re-use                      | Cycling of elements |
|-------------------------|-----------------------------------------------------|---------------------|
| Plant N acquisition     | Plant nutrient and C conservation                   | Ecosystem C cycling |
| Plant P acquisition     | Plant protection against<br>pathogens and herbivory | Ecosystem N cycling |
|                         | Plant resistance to uprooting                       |                     |
| Plant water acquisition | Plant resistance to<br>and avoidance of drought     | Ecosystem P cycling |
|                         | Plant regeneration                                  | Bedrock weathering  |
|                         | Plant storage                                       |                     |
|                         |                                                     |                     |

Plant tolerance to waterlogging







### What is the relative 'representation' of the trait categories?



What are the traits most often connected to functioning?

SRL?

## **RNC?**

**Root diameter?** 

# **RTD**?

### What are the traits most often connected to functioning?



### Take home message

Below-ground traits with the widest importance in plant and ecosystem functioning are not necessarily those that are the most commonly measured.

The relevance of commonly measured (soft) traits to plant and ecosystem functioning is often indirect and insubstantial, or requiring further testing.

Important traits belong to a range of categories representing a diversity of research fields

Interdisciplinary approaches are needed to adequately capture the plant effects on ecosystem functioning

### **Organism diversity – ecosystem functioning**



Van der Plas et al. 2019 Biol. Rev.



### How small parts of a system do affect the system as a whole

Root level (10<sup>-1</sup> m)



### **Up-scaling**

Organism selection

Trait selection

Data acquisition

Data synthesis

Temporal and spatial scale of sampling

Modelling approach

• • •

### **Organism selection**

1) Focusing on one type of organism only (if possible, the most important one for functioning)

2) Using multitrophic frameworks

1) Focusing on a priori important species

2) Focusing on dominant species

### Trait selection

- 1) Focusing on a range of easily measurable traits (potentially with low connection to the function)
  - 2) Targeting a smaller range of 'hard' traits (with more direct connection to the function)

- 1) Targeting traits based on univariate explanatory power
- 2) Targeting traits on a priori knowledge of trait inter-relationships and nonoverlapping predictive power

### **Example of trait inter-relationships**



Freschet et al. 2021 New Phyt.

### Trait acquisition

- 1) Use of databases (local, regional, global: uneven data and meta-data coverage)
  - 2) On-site measurements (include to some extent intraspecific trait variation)

### Approaches to synthetize trait data

(across multiple coexisting organisms)

1) Mean field approaches (assume that organisms contribute proportionally to their own weight in the community)

2) Diversity-explicit approaches (includes metrics of the shape of trait distribution: e.g. mean, variance, skewness, kurtosis)

### Temporal scale of sampling

- 1) One measurement in time (e.g. peak of productivity in summer for plants)
- 2) Several measurements (e.g. across seasons, measurements of interannual differences, ... )

### Spatial scale of sampling

- 1) Include one well-identified spatial scale
  - 2) Include several spatial scales

1) Spatial averaging (ecosystem functioning is the average of all small-scale functioning)

2) Spatially-explicit sampling of ecosystem sub-units (ecosystem functioning can be provided by few sub-units)

### Statistical/modelling approach

1) Using statistical models (univariate, multivariate, structural equation modelling...)

2) Construct more complex models (such as process-based models)

### Take home message

Up-scaling is a critical approach to fill in the gap between the small-scale mechanistic understanding of reduced systems and large-scale integrative, but mostly descriptive assessments.

Complex models are built up from simple models. There are many complementary approaches where less labour intensive choices on the one hand is needed to explore more complexity in another aspect.

'Model-experiment' integration (or Mod-Ex) as a way forward: combines current empirical understanding with model conceptualization, parameterization, and validation in an iterative process to improve model representation of the natural world.

The reverse approach of down-scaling has sometimes been used successfully, starting from the observation of major differences in functioning between systems, and tracking back the causes to individual organisms and traits.

