Searching for the best distancebased population density estimator

沈国春 华东师范大学

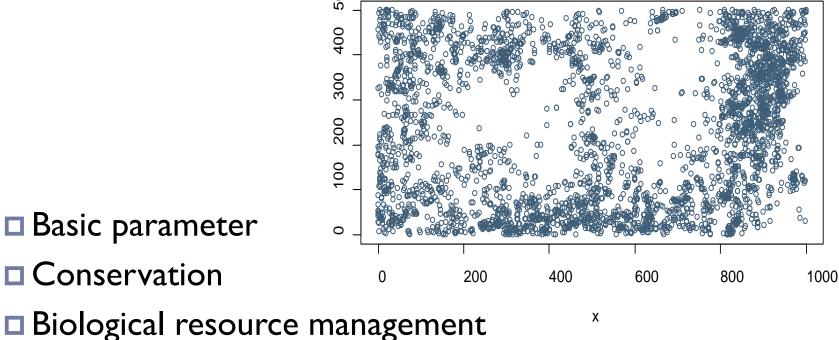
Outline

- I. Our problem and objectives.
- 2. Three new general distance-based population density estimators.
- 3. Performance comparison

Problem and objectives

Problem---Population Size

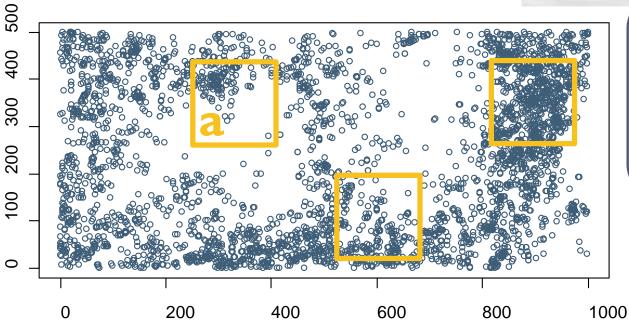
How many individuals of a plant species in an observed area? 500



Quadrat Method---Population Size

Quadrat method

$$\widehat{N}(A_0) = \frac{N_i}{n} \frac{A_0}{a}$$

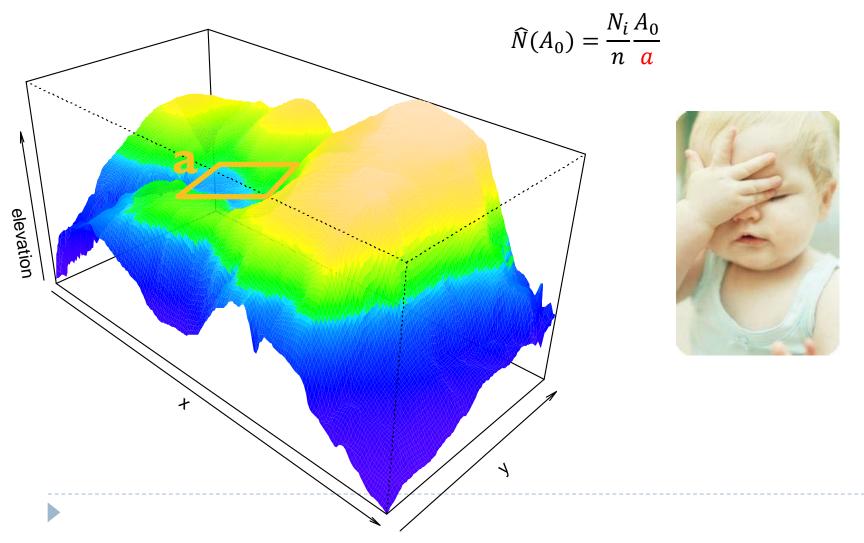


Х

....98743,98844,98635..... ...Where I am? ... I,2,3..... Did I count that plat? I,2,3.....

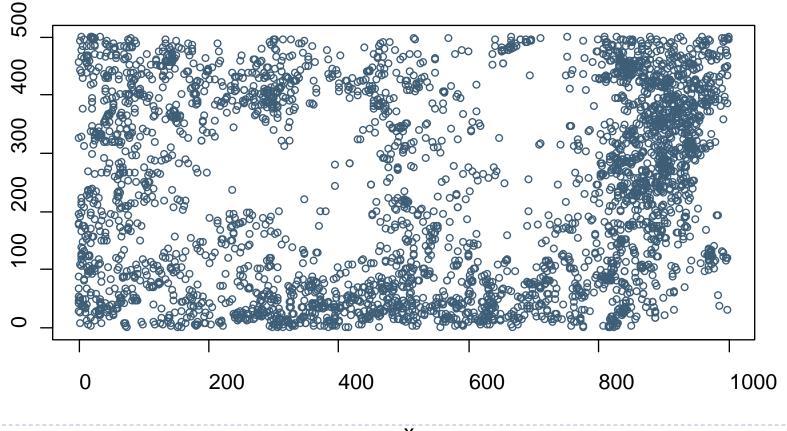
Quadrat Method---Population Size

Quadrat method



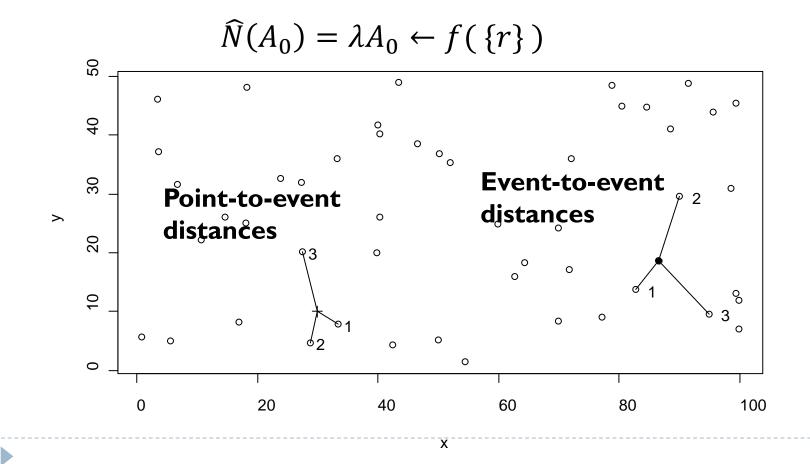
Problem

Can we find a efficient and robust way to estimate the population density?



Distance Method---Population Size

Distance-based population density estimator (DPDE)



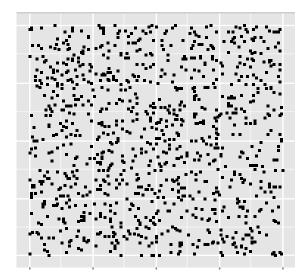
Existed DPDEs

- At least 30 DPDEs existed.
- Which one we can use?

TABLE 1. Summary of the density estimators used in the simulations, their formulae, and the primary references.

Description*	Formula [†]	References
Basic Distance (BD) estimators		
1. Closest individual (CI)	BDCI = $1/(4[\Sigma R_{(1)i}/N]^2)$	Cottam et al. 1953, Cottam and Curtis 1956, Kendall and Moran 1963, Pollard 1971
 Nearest neighbor (NN) Second nearest neighbor (2N) Compound Another compound 	BDNN = $1/(2.778[Σ H(1)/N]2)$ BD2N = $1/(2.778[Σ H(2)/N]2)$ BDAV2 = (BDCI + BDNN)/2 BDAV3 = (BDCI + BDNN + BD2N)/3	Cottam and Curtis 1956 Cottam and Curtis 1956 Diggle 1975 This paper
Batcheler-Bell (BB) estimators		Puper
 Closest individual (CI) Nonrandomness (NR) corrected 	BBCI = $p/\pi[\Sigma R^2_{(1)i} + (N - p)R^2]$ BBNR (see reference)	Batcheler and Bell 1970 Batcheler and Bell 1970
Non-parametric (NP) estimators		
 Original bias reduced (i.e., general form [GF]) 	NPGF = $(N^{\nu_1} - 1)/NA_{(N^{\nu_1})}$	Patil et al. 1979
9. Interpolated original general form (IG)	$NPIG = (N^{\frac{1}{2}} - 1)/NA^{*}_{(N^{\frac{1}{2}})}$	This paper
10. Optimal form (OF)	NPOF = $(N^{\frac{1}{2}} - 1)/NA_{(N^{\frac{1}{2}})}$	Patil et al. 1982
11. Interpolated optimal form (IO)	NPIO = $(N^{\nu_3} - 1)/NA^*_{(N^{\nu_3})}$	This paper
Kendall-Moran (KM) estimators		
12. CI and NN search areas pooled (P)	$\mathrm{KMP} = \{ [\Sigma(p_i + n_i)] - 1 \} / \Sigma B_i$	Kendall and Moran 1963, James 1971
13. CI, NN, 2N search areas pooled (i.e., pooled with search area to 2N [2P])	$\mathrm{KM2P} = \{ [\Sigma(p_i + n_i + m_i)] - 1 \} / \Sigma C_i$	Kendall and Moran 1963
Γ-Square (TS) estimators		
 Basic T² estimator (BA) Reduced bias (RB) in aggregated populations 	$TSBA = 2N/[\pi \Sigma R_{(1)i}^{2} + 0.5\pi \Sigma T_{i}^{2}]$ $TSRB = N/\pi [(\Sigma R_{(1)i}^{2})(0.5 \Sigma T_{i}^{2})]^{\frac{1}{2}}$	Diggle 1975 Diggle 1975
16. Robust (Byth [B])	$TSB = N^2 / [(2 \Sigma R_{(1)i})(\sqrt{2})(\Sigma T_i)]$	Byth 1982
Ordered Distance (OD) estimators		
 Closest individual Second closest individual (2C) Third closest individual (3C) 	ODCI = $(N - 1)/\pi \Sigma(R_{(1)i})^2$ OD2C = $(2N - 1)/\pi \Sigma(R_{(2)i})^2$ OD3C = $(3N - 1)/\pi \Sigma(R_{(3)i})^2$	Morisita 1957, Pollard 1971 Morisita 1957, Pollard 1971 Morisita 1957, Pollard 1971
Angle-Order (AO) estimators		
20. Point-centered-quarter (i.e., 1 observa- tion per quadrant [1Q])	AO1Q = $12N/\pi \Sigma 1/R_{(1)y^2}$	Stearns 1949, Cottam et al. 1953, Cottam and Curtis 1956, Morisita 1957, Pollaro 1971
21. Second closest individual in each quad- rant (2Q)	AO2Q = $28N/\pi \Sigma 1/R_{(2)ij}^2$	Morisita 1957, Pollard 1971
22. Third closest individual in each quadrant (30)	AO3Q = $44N/\pi \Sigma 1/R_{(3)ij^2}$	Morisita 1957, Pollard 1971
 (3Q) 23. Third closest individual in each quadrant (3) 	AO3 = $[2/\pi N] \Sigma \Sigma (1/R_{(3)ij})$	Morisita 1971

Existed DPDEs



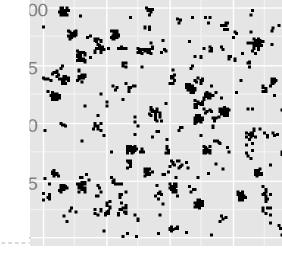
Assumption: **Random** distribution

	Description*	Formula†	References
Basic	Distance (BD) estimators		
	Closest individual (Cl) Nearest neighbor (NN)	BDCI = $1/(4[\Sigma R_{CD}/N]^2)$ BDNN = $1/(2.778[\Sigma H_{CD}/N]^2)$	Cottam et al. 1953, Cottam an Curtis 1956, Kendall and Moran 1963, Pollard 1971 Cottam and Curtis 1956
3. 4.	Second nearest neighbor (2N) Compound	$BD2N = 1/(2.778[\Sigma H_{GN}/N]^2)$ BDAV2 = (BDCI + BDNN)/2	Cottam and Curtis 1956 Diggle 1975
	Another compound	BDAV3 = (BDCI + BDNN + BD2N)/3	This paper
	eler-Bell (BB) estimators	P.P.C. (P. P ()	D
	Closest individual (CI) Nonrandomness (NR) corrected	BBCI = $p/\pi[\Sigma R^2_{(1)} + (N - p)R^2]$ BBNR (see reference)	Batcheler and Bell 1970 Batcheler and Bell 1970
Non-	parametric (NP) estimators		
8.	Original bias reduced (i.e., general form [GF])	$NPGF = (N^{n_0} - 1)/NA_{0N^n}$	Patil et al. 1979
	Interpolated original general form (IG)	$NPIG = (N^{n_1} - 1)/NA^*_{(N^n)}$	This paper
	Optimal form (OF)	$NPOF = (N^n - 1)/NA_{0N^n}$	Patil et al. 1982
11.	Interpolated optimal form (IO)	$NPIO = (N^{n_i} - 1)/NA^{*}_{(N^{n_i})}$	This paper
Kend	all-Moran (KM) estimators		
12.	CI and NN search areas pooled (P)	$\mathbf{KMP} = \{ [\Sigma(p_i + n_i)] - 1 \} / \Sigma B_i$	Kendall and Moran 1963, James 1971
13.	CI, NN, 2N search areas pooled (i.e., pooled with search area to 2N [2P])	$\mathbf{KM2P} = \{ [\Sigma(p_i + n_i + m_i)] - 1) / \Sigma C_i$	Kendall and Moran 1963
T-Squ	uare (TS) estimators		
	Basic T ² estimator (BA) Reduced bias (RB) in aggregated popu- lations	$\begin{array}{l} \text{TSBA} = 2N / [\pi \ \Sigma \ \mathbf{R}_{(1)}^2 + 0.5\pi \ \Sigma \ T_i^2] \\ \text{TSRB} = N / \pi [(\Sigma \ \mathbf{R}_{(1)}^2)(0.5 \ \Sigma \ T_i^2)]^n \end{array}$	Diggle 1975 Diggle 1975
16.	Robust (Byth [B])	$\text{TSB} = N^2/[(2 \ \Sigma \ R_{\scriptscriptstyle (1)})(\sqrt{2})(\Sigma \ T_i)]$	Byth 1982
Order	red Distance (OD) estimators		
18.	Closest individual Second closest individual (2C) Third closest individual (3C)	ODCI = $(N - 1)/\pi \Sigma (R_{(1)})^2$ OD2C = $(2N - 1)/\pi \Sigma (R_{(2)})^2$ OD3C = $(3N - 1)/\pi \Sigma (R_{(2)})^2$	Morisita 1957, Pollard 1971 Morisita 1957, Pollard 1971 Morisita 1957, Pollard 1971
Angle	-Order (AO) estimators		
20.	Point-centered-quarter (i.e., 1 observa- tion per quadrant [1Q])	$AO1Q = 12N/\pi \Sigma 1/R_{(1)j}^{2}$	Stearns 1949, Cottam et al. 1953, Cottam and Curtis 1956, Morisita 1957, Pollar 1971
	Second closest individual in each quad- rant (2Q)		Morisita 1957, Pollard 1971
	Third closest individual in each quadrant (3Q)		Morisita 1957, Pollard 1971
23.	Third closest individual in each quadrant (3)	$AO3 = [2/\pi N] \Sigma \Sigma (1/R_{(3)j})$	Morisita 1971

TABLE 1. Summary of the density estimators used in the simulations, their formulae, and the primary reference

Population distributions of most species in nature are aggregated.

Performance of existed DPDEs are low.



Main Objectives

- Propose two estimators to generalize most existing distance-based population density estimators.
- Propose a new estimator based on non-randomly distributed populations
- Test the new estimators by simulation and real forest data.

Three new general population density estimators

The 1st general DPDEs

 \frown

1. The general simple DPDE

$$\hat{\lambda}_1 = \frac{q(\mathrm{nqk}-1)}{\pi \sum_{i=1}^n \sum_{j=1}^q r_{kij}^2}$$

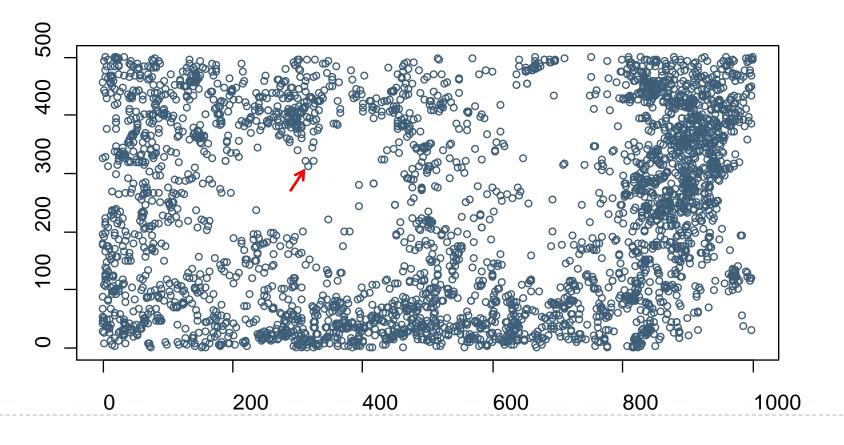
i: ith focal point/event;
n: total # focal point/e;
j: jth equal angle sector;
q: total # sectors centered at one focal point/event;
k: kth nearest neighbor;

$$rac{r}{r}$$

$$\operatorname{Var}(\hat{\lambda}_1) = \frac{\lambda^2}{nqk-2}$$

The 1st general DPDEs

• Point-to-event distances used in $\hat{\lambda}_1$ tend to be increased by aggregation and decreased by regularity in the underlying pattern; while the reverse is true for event-to-event distances.



The 2nd general DPDEs

2. The general composite DPDE

$$\hat{\lambda}_c = \sqrt{\hat{\lambda}_e \hat{\lambda}_p}$$

Substitute by $\hat{\lambda}_1$ and corrected it to a unbiased form

$$\hat{\lambda}_{c} = \frac{q\Gamma^{2}(\frac{1}{2}nqk)}{\pi\Gamma^{2}(\frac{1}{2}nqk - \frac{1}{2})\sqrt{\sum_{i=1}^{qn/2}r_{kie}^{2}\sum_{j=1}^{qn/2}r_{kjp}^{2}}}$$

 r_{kie} and r_{kip} are distance from event to event and point to event respectively.

$$\operatorname{Var}(\widehat{\lambda}_{c1}) = \lambda^2 \left(\frac{\Gamma^4\left(\frac{1}{2}nqk\right)}{\left(\frac{1}{2}nqk - 1\right)^2 \Gamma^4\left(\frac{1}{2}nqk - \frac{1}{2}\right)} - 1 \right)$$

However, the first general simple DPDE and the second general composite DPDE are both derived from random population.

The 3rd general DPDE

If we assume number of individuals in each sector with radii r_{kij} follows negative binomial distribution, then we can estimated population density λ by maximizing the following likelihood function:

$$\hat{\lambda}_{n_ptoe} = \frac{q(2k-1)\sum_{m=1}^{nq} r_{m_ptoe}^{-1}}{\pi \sum_{m=1}^{nq} r_{m_ptoe}} - \frac{nq^2k}{\pi \sum_{m=1}^{nq} r_{m_ptoe}^2}$$

Performance criterion

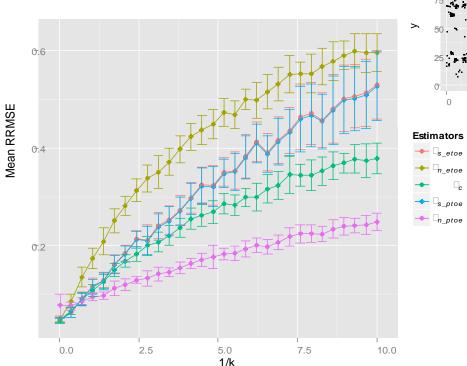
Relative root-mean-squared-error (RRMSE)

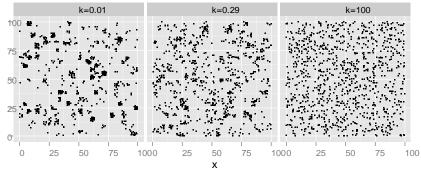
RRMSE =
$$\sqrt{\frac{\sum_{i}^{c} (\lambda - \hat{\lambda}_{i})^{2}}{c\lambda^{2}}}$$

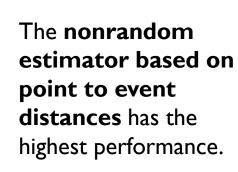
where c is the total number of estimates.

Performance comparison

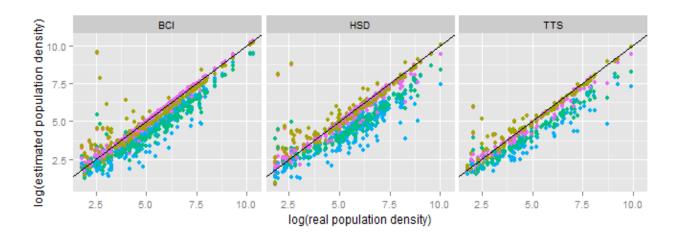
Performance Comparison by simulation

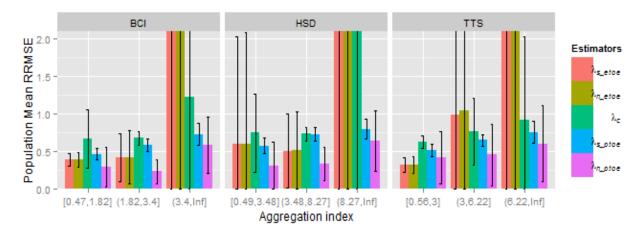






Performance Comparison by real data

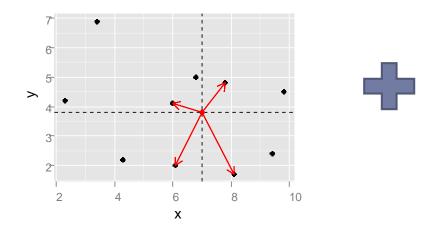




The nonrandom estimator based on point to event distances has the highest and most consistent performance.

Estimation of population density

Point-to-event distance samples



The general nonrandom distancebased population density estimator

$$\hat{\lambda}_{n_ptoe} = \frac{q(2k-1)\sum_{m=1}^{nq} r_{m_ptoe}^{-1}}{\pi \sum_{m=1}^{nq} r_{m_ptoe}} - \frac{nq^2k}{\pi \sum_{m=1}^{nq} r_{m_ptoe}^2}$$

Thanks!